3.67 \(\int \frac{1}{\sqrt{a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

Optimal. Leaf size=266 \[ \frac{\sqrt{2} f \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\sqrt{2} f \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}} \]

[Out]

-((Sqrt[2]*f*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2
 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*
Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + (Sqrt[2]*f*ArcTanh[(2*
a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sq
rt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 -
2*d*f + e*Sqrt[e^2 - 4*d*f])])

_______________________________________________________________________________________

Rubi [A]  time = 0.452703, antiderivative size = 266, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125 \[ \frac{\sqrt{2} f \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\sqrt{2} f \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}} \]

Antiderivative was successfully verified.

[In]  Int[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-((Sqrt[2]*f*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2
 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*
Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + (Sqrt[2]*f*ArcTanh[(2*
a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sq
rt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 -
2*d*f + e*Sqrt[e^2 - 4*d*f])])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 45.554, size = 267, normalized size = 1. \[ \frac{\sqrt{2} f \operatorname{atanh}{\left (\frac{\sqrt{2} \left (2 a f - c x \left (e + \sqrt{- 4 d f + e^{2}}\right )\right )}{2 \sqrt{a + c x^{2}} \sqrt{2 a f^{2} - 2 c d f + c e^{2} + c e \sqrt{- 4 d f + e^{2}}}} \right )}}{\sqrt{- 4 d f + e^{2}} \sqrt{2 a f^{2} - 2 c d f + c e^{2} + c e \sqrt{- 4 d f + e^{2}}}} - \frac{\sqrt{2} f \operatorname{atanh}{\left (\frac{\sqrt{2} \left (2 a f - c x \left (e - \sqrt{- 4 d f + e^{2}}\right )\right )}{2 \sqrt{a + c x^{2}} \sqrt{2 a f^{2} - 2 c d f + c e^{2} - c e \sqrt{- 4 d f + e^{2}}}} \right )}}{\sqrt{- 4 d f + e^{2}} \sqrt{2 a f^{2} - 2 c d f + c e^{2} - c e \sqrt{- 4 d f + e^{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

sqrt(2)*f*atanh(sqrt(2)*(2*a*f - c*x*(e + sqrt(-4*d*f + e**2)))/(2*sqrt(a + c*x*
*2)*sqrt(2*a*f**2 - 2*c*d*f + c*e**2 + c*e*sqrt(-4*d*f + e**2))))/(sqrt(-4*d*f +
 e**2)*sqrt(2*a*f**2 - 2*c*d*f + c*e**2 + c*e*sqrt(-4*d*f + e**2))) - sqrt(2)*f*
atanh(sqrt(2)*(2*a*f - c*x*(e - sqrt(-4*d*f + e**2)))/(2*sqrt(a + c*x**2)*sqrt(2
*a*f**2 - 2*c*d*f + c*e**2 - c*e*sqrt(-4*d*f + e**2))))/(sqrt(-4*d*f + e**2)*sqr
t(2*a*f**2 - 2*c*d*f + c*e**2 - c*e*sqrt(-4*d*f + e**2)))

_______________________________________________________________________________________

Mathematica [A]  time = 2.57428, size = 425, normalized size = 1.6 \[ \frac{\sqrt{2} f \left (-\frac{\log \left (\sqrt{2} \sqrt{a+c x^2} \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}+2 a f \sqrt{e^2-4 d f}+c x \left (-e \sqrt{e^2-4 d f}-4 d f+e^2\right )\right )}{\sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{\log \left (\sqrt{2} \sqrt{a+c x^2} \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}+2 a f \sqrt{e^2-4 d f}-c x \left (e \sqrt{e^2-4 d f}-4 d f+e^2\right )\right )}{\sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{\log \left (\sqrt{e^2-4 d f}-e-2 f x\right )}{\sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\log \left (\sqrt{e^2-4 d f}+e+2 f x\right )}{\sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

(Sqrt[2]*f*(Log[-e + Sqrt[e^2 - 4*d*f] - 2*f*x]/Sqrt[2*a*f^2 + c*(e^2 - 2*d*f -
e*Sqrt[e^2 - 4*d*f])] - Log[e + Sqrt[e^2 - 4*d*f] + 2*f*x]/Sqrt[2*a*f^2 + c*(e^2
 - 2*d*f + e*Sqrt[e^2 - 4*d*f])] - Log[2*a*f*Sqrt[e^2 - 4*d*f] + c*(e^2 - 4*d*f
- e*Sqrt[e^2 - 4*d*f])*x + Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d
*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2]]/Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sq
rt[e^2 - 4*d*f])] + Log[2*a*f*Sqrt[e^2 - 4*d*f] - c*(e^2 - 4*d*f + e*Sqrt[e^2 -
4*d*f])*x + Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2
 - 4*d*f])]*Sqrt[a + c*x^2]]/Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]
)]))/Sqrt[e^2 - 4*d*f]

_______________________________________________________________________________________

Maple [B]  time = 0.017, size = 589, normalized size = 2.2 \[ -{\sqrt{2}\ln \left ({1 \left ({\frac{1}{{f}^{2}} \left ( -\sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c \right ) }-{\frac{c}{f} \left ( e-\sqrt{-4\,df+{e}^{2}} \right ) \left ( x-{\frac{1}{2\,f} \left ( -e+\sqrt{-4\,df+{e}^{2}} \right ) } \right ) }+{\frac{\sqrt{2}}{2}\sqrt{{\frac{1}{{f}^{2}} \left ( -\sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c \right ) }}\sqrt{4\, \left ( x-1/2\,{\frac{-e+\sqrt{-4\,df+{e}^{2}}}{f}} \right ) ^{2}c-4\,{\frac{c \left ( e-\sqrt{-4\,df+{e}^{2}} \right ) }{f} \left ( x-1/2\,{\frac{-e+\sqrt{-4\,df+{e}^{2}}}{f}} \right ) }+2\,{\frac{-\sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c}{{f}^{2}}}}} \right ) \left ( x-{\frac{1}{2\,f} \left ( -e+\sqrt{-4\,df+{e}^{2}} \right ) } \right ) ^{-1}} \right ){\frac{1}{\sqrt{-4\,df+{e}^{2}}}}{\frac{1}{\sqrt{{\frac{1}{{f}^{2}} \left ( -\sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c \right ) }}}}}+{\sqrt{2}\ln \left ({1 \left ({\frac{1}{{f}^{2}} \left ( \sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c \right ) }-{\frac{c}{f} \left ( e+\sqrt{-4\,df+{e}^{2}} \right ) \left ( x+{\frac{1}{2\,f} \left ( e+\sqrt{-4\,df+{e}^{2}} \right ) } \right ) }+{\frac{\sqrt{2}}{2}\sqrt{{\frac{1}{{f}^{2}} \left ( \sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c \right ) }}\sqrt{4\, \left ( x+1/2\,{\frac{e+\sqrt{-4\,df+{e}^{2}}}{f}} \right ) ^{2}c-4\,{\frac{c \left ( e+\sqrt{-4\,df+{e}^{2}} \right ) }{f} \left ( x+1/2\,{\frac{e+\sqrt{-4\,df+{e}^{2}}}{f}} \right ) }+2\,{\frac{\sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c}{{f}^{2}}}}} \right ) \left ( x+{\frac{1}{2\,f} \left ( e+\sqrt{-4\,df+{e}^{2}} \right ) } \right ) ^{-1}} \right ){\frac{1}{\sqrt{-4\,df+{e}^{2}}}}{\frac{1}{\sqrt{{\frac{1}{{f}^{2}} \left ( \sqrt{-4\,df+{e}^{2}}ce+2\,a{f}^{2}-2\,cdf+{e}^{2}c \right ) }}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x)

[Out]

-1/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+e^2*c)/f
^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+e^2*c)/f^2-c*(e-(-4*d*f+e
^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)
*c*e+2*a*f^2-2*c*d*f+e^2*c)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-
4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^
(1/2)*c*e+2*a*f^2-2*c*d*f+e^2*c)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))+
1/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+e^2*c)/f^2
)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+e^2*c)/f^2-c*(e+(-4*d*f+e^2)
^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+
2*a*f^2-2*c*d*f+e^2*c)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e
+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*
e+2*a*f^2-2*c*d*f+e^2*c)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.86457, size = 6849, normalized size = 25.75 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)),x, algorithm="fricas")

[Out]

-1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*
f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c
^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e
^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2
*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^
2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3
*a*c*d*e^2)*f))*log((4*c^2*d*e*f*x - 2*a*c*e^2*f + sqrt(2)*(c^2*d*e^3 + 4*a*c*d*
e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f - (c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e*f^4 +
 (4*a^2*c*d^2*e + a^3*e^3)*f^3 + (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^
4*e + 5*a*c^2*d^2*e^3 - a^2*c*e^5)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^
4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3
 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(
c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 -
2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)
*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^
4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3
 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(
c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2
*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) + 2*(4*a^3*
d*f^4 - (8*a^2*c*d^2 + a^3*e^2)*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c
^2*d^2*e^2 + a^2*c*e^4)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2
*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*
e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3
*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/x) + 1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f +
2*a*f^2 + (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(
2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^
2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d
*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 +
3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (
8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*f*x -
2*a*c*e^2*f - sqrt(2)*(c^2*d*e^3 + 4*a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f - (
c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e*f^4 + (4*a^2*c*d^2*e + a^3*e^3)*f^3 + (4*a
*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^4*e + 5*a*c^2*d^2*e^3 - a^2*c*e^5)*f)
*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a
^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4
+ 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2
*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 + (c^2*d^2*e^2 + a*
c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)
*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a
^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4
+ 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2
*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 -
2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) + 2*(4*a^3*d*f^4 - (8*a^2*c*d^2 + a^3*e^2)*f^3 +
 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c^2*d^2*e^2 + a^2*c*e^4)*f)*sqrt(c^2*e
^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 +
a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^
2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f))
)/x) - 1/4*sqrt(2)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 - (c^2*d^2*e^2 + a*c*e^4 - 4*
a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*
e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 +
 a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c
^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)
))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d
^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*f*x - 2*a*c*e^2*f + sqrt(2)*(c^2*d*e^3 + 4*
a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)*f + (c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e
*f^4 + (4*a^2*c*d^2*e + a^3*e^3)*f^3 + (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*
c^3*d^4*e + 5*a*c^2*d^2*e^3 - a^2*c*e^5)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*
d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c
^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2
 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*
e^2 - 2*c*d*f + 2*a*f^2 - (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^
2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*
d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c
^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2
 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 -
 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) - 2*(
4*a^3*d*f^4 - (8*a^2*c*d^2 + a^3*e^2)*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2
- (a*c^2*d^2*e^2 + a^2*c*e^4)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a
^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^
3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d
^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/x) + 1/4*sqrt(2)*sqrt((c*e^2 - 2*c*
d*f + 2*a*f^2 - (c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2
 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 +
a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a
^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*
d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f
^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f))*log((4*c^2*d*e*
f*x - 2*a*c*e^2*f - sqrt(2)*(c^2*d*e^3 + 4*a*c*d*e*f^2 - (4*c^2*d^2*e + a*c*e^3)
*f + (c^3*d^3*e^3 + a*c^2*d*e^5 - 4*a^3*d*e*f^4 + (4*a^2*c*d^2*e + a^3*e^3)*f^3
+ (4*a*c^2*d^3*e - 5*a^2*c*d*e^3)*f^2 - (4*c^3*d^4*e + 5*a*c^2*d^2*e^3 - a^2*c*e
^5)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 +
 (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^
3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a
^2*c^2*d*e^4)*f)))*sqrt(c*x^2 + a)*sqrt((c*e^2 - 2*c*d*f + 2*a*f^2 - (c^2*d^2*e^
2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e
^2)*f)*sqrt(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 +
 (16*a^3*c*d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^
3*d^4 + 11*a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a
^2*c^2*d*e^4)*f)))/(c^2*d^2*e^2 + a*c*e^4 - 4*a^2*d*f^3 + (8*a*c*d^2 + a^2*e^2)*
f^2 - 2*(2*c^2*d^3 + 3*a*c*d*e^2)*f)) - 2*(4*a^3*d*f^4 - (8*a^2*c*d^2 + a^3*e^2)
*f^3 + 2*(2*a*c^2*d^3 + 3*a^2*c*d*e^2)*f^2 - (a*c^2*d^2*e^2 + a^2*c*e^4)*f)*sqrt
(c^2*e^2/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (16*a^3*c*
d^2 + a^4*e^2)*f^4 - 12*(2*a^2*c^2*d^3 + a^3*c*d*e^2)*f^3 + 2*(8*a*c^3*d^4 + 11*
a^2*c^2*d^2*e^2 + a^3*c*e^4)*f^2 - 4*(c^4*d^5 + 3*a*c^3*d^3*e^2 + 2*a^2*c^2*d*e^
4)*f)))/x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{c x^{2} + a}{\left (f x^{2} + e x + d\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)), x)